
International Journal of Research in Advent Technology, Vol.3, No.12, December 2015
E-ISSN: 2321-9637

Available online at www.ijrat.org

27

A New Approach towards Design and Development of
Portable Honeypot

Rohan Thakur1, Ashu Singla2

SSIET, Dera Bassi, Punjab, India
1
, Hartron Chandigarh, India

2
 thakur577@gmail.com1 , 4s.ashu@gmail.com2

Abstract-A honeypot is a system that pretends to be an attractive target to attract malware and attackers. A
honeypot has no productive use; each attempt to connect it can be interpreted as an attack. Based on honeypot
deployment topology, if it is deployed in front of a firewall, it serves as an early warning system, if deployed
behind the firewall, it serve as part of defense-in-depth system, in such case it helps to detect attackers who
bypass the firewall and IDS(intrusion detection system) or it can be an insider threat. According to the level of
interaction between the attacker and the honeypots, the honeypots are generally divided into three categories:
low, medium and high. Configuring and maintaining a high interaction honeypot is always a tough task for new
security researcher and network administrators. The purpose of this study is to design and implement easy to
configure, easy to deploy, portable high interaction honeypot. To reduce the burden on the deployment of
honeypot, we implemented the system on the USB as a live USB system, which gives the system features of easy
installation, high portability and plug-n-play operation. In this paper an idea is presented on portable honeypot on
a USB device that aims at fast detection of malicious network activity and thus boosts the security awareness of
its user.

Index Terms- Early Warning Security System, Live USB Honeypot, Portable USB Honeypot

1. INTRODUCTION

A honeypot is a closely monitored computing resource
that we want to be probed, attacked, or compromised.
More precisely, a honeypot is "an information system
resource whose value lies in unauthorized or illicit use
of that resource". The value of a honeypot is weighed
by the information that can be obtained from it.
Monitoring the data that enters and leaves a honeypot
lets us gather information that is not available to
NIDS. For example, we can log the keystrokes of an
interactive session even if encryption is used to protect
the network traffic. To detect malicious behavior,
NIDS requires signatures of known attacks and often
fail to detect compromises that were unknown at the
time it was deployed. On the other hand, honeypots
can detect vulnerabilities that are not yet understood.
For example, we can detect compromise by observing
network traffic leaving the honeypot, even if the
means of the exploit has never been seen before.
Because a honeypot has no production value, any
attempt to contact it is suspicious by definition.
Consequently, forensic analysis of data collected from
honeypots is less likely to lead to false positives than
data collected by NIDS. Most of the data that we
collect with the help of a honeypot can help us to
understand attacks.
Honeypots can run any operating system and any
number of services. The configured services determine
the vectors available to an adversary for
compromising or probing the system. A high-
interaction honeypot provides a real system the
attacker can interact with. In contrast, a low-
interaction honeypots simulates only some parts — for
example, the network stack [1]. A high-interaction

honeypot can be compromised completely, allowing
an adversary to gain full access to the system and use
it to launch further network attacks. In contrast, low-
interaction honeypots simulate only services that
cannot be exploited to get complete access to the
honeypot. Low interaction honeypots are more
limited, but they are useful to gather information at a
higher level — for example, to learn about network
probes or worm activity. They can also be used to
analyze spammers or for active countermeasures
against worms; neither of these two approaches is
superior to the other; each has unique advantages and
disadvantages.
Further honeypots can be described in two more types;
physical and virtual honeypots. A physical honeypot is
a real machine on the network with its own IP address.
A virtual honeypot is simulated by another machine
that responds to network traffic sent to the virtual
honeypot.
When gathering information about network attacks or
probes, the number of deployed honeypots influences
the amount and accuracy of the collected data. A good
example is measuring the activity of HTTP-based
worms [2]. We can identify these worms only after
they complete a TCP handshake and send their
payload. However, most of their connection requests
will go unanswered because they contact randomly
chosen IP addresses. A honeypot can capture the worm
payload by configuring it to function as a web server
or by simulating vulnerable network services. The
more honeypots we deploy, the more likely one of
them is contacted by a worm.

This paper begins with the concept of implementation
of High-Interaction Portable Passive Honeypot.
Complete Honeypot system is a live system i.e. the

International Journal of Research in Advent Technology, Vol.3, No.12, December 2015
E-ISSN: 2321-9637

Available online at www.ijrat.org

28

system is a complete bootable computer installation,
including operating system, which runs in computer’s
memory, rather than loading from a hard disk drive. It
allows users to run an operating system for any
purpose without installing it or making any changes to
the computer's configuration. At the end of a live USB
session the computer remains as it was before. The
live system is able to run without permanent
installation by placing the files that normally would be
stored on a hard drive into RAM, typically in a RAM
disk. The computer must have sufficient RAM both to
store these files and maintain normal operation. Now
the advantage of the above system is that even if our
Honeypot is compromised the system will come to its
initial state once it is rebooted.

According to the statistics by the Computer
Emergency Response Team (CERT), the number of
reported security incidents per year is rising and
malicious users are increasingly using automated
attack tools [3], in order to detect and stop malicious
activities, and protect their assets, organizations
implement various security tools and methods. Two of
the most common security tools that are used today to
protect organizations network are firewalls and
Intrusion Detection Systems (IDS). Firewalls are most
often implemented at the network perimeters where
they control network traffic. This control is employed
according to a set of rules which define allowed and
denied network traffic. IDS monitor network traffic
and alert the administrator when a known malicious
activity is detected. In order to detect a malicious
activity, IDS will use two methods: signature detection
and anomaly based detection. These security tools
have some inherent shortcomings [4]. A firewall
cannot stop malicious users exploiting a new
vulnerability in a service to which access is allowed
by the firewall rules. IDS cannot reliably detect a
previously unknown attack, especially if only
signature detection is used. If anomaly based detection
is used, it is based "on the assumption that intrusive
activities are necessarily different from non-intrusive
activities at some level of observation." [5] None of
these methods of detection can guarantee that the IDS
will report all attacks, so false negative detections will
exist.

This motivated us to create this system to capture
these unknown attacks and study the attacks in order
to help security agencies and researchers. We studied
references for already existing high interaction
systems and noted the limitation of existing
systems. Then we created, and designed our own
system and tried to improve on the drawbacks of other
existing system. For this first we made it a live system
(always running in memory). Generally when high
interaction honeypots are compromised, the state
changes becomes persistent and it is difficult to bring

back the system to its original state. Making the
system as live system overcomes this problem such
that the system comes to its original state just by
rebooting. Then we added data control module, data
control prevents attackers from using a compromised
honeypot system to attack other external computer
systems. To hide the network interactions from
attackers, we created a different system to perform
data capturing activities, the data will go through this
new machine, which is hidden to attacker and attacker
will only see victim machine having vulnerabilities.

1. OBJECTIVE AND SCOPE

Scope of this work includes portable high interaction
USB passive Honeypot, its design, development,
configuration and installation. Low Interaction,
Medium Interaction and Client Honeypots are out of
this scope. Analysis and Classification of collected
PCAP data is also out of the scope of this work.

The Objective of this work is to design and develop
completely portable high interaction honeypot.
Honeypot should be easy to deploy and configure. If
honeypot system gets compromised it should be easy
to restore the state of the system to its original state
and at the same time we should be able to collect
attack data.

In our study of Honeypots and particularly High
Interaction Honeypots we found that these Honeypots
are quite difficult to install and deploy. In addition to
this, maintenance of these honeypots is bit risky, as an
attacker can completely compromise the system and
use the honeypot to initiate outbound
connections/attacks. In comparison low interaction
honeypots are not risky, as it is not an actual operating
system; it is just like a simulated environment of set of
network services. Medium Interaction Honeypot is the
combination of real as well as simulated services.

3. BLOCK DIAGRAM OF THE SYSTEM

Cent OS ISO Live
Virtualbox Installed
(Base OS/Machine)

(High Interaction Passive Honeypot)
Window XP/2007 ISO Live
(Guest OS)

(Data Capture and Data Control Module)
Cent OS ISO Live
TCP Dump and Snort Installed
(Guest OS)

eth0

eth0

eth1

eth0

International Journal of Research in Advent Technology, Vol.3, No.12, December 2015
E-ISSN: 2321-9637

Available online at www.ijrat.org

29

The complete system consists of 3 sub systems, i.e.
one Base OS and two Guest OS

1. Base OS: Cent OS with Virtualbox.
2. Guest OS: (Data capture and Data

Control): Cent OS with tcpdump and
Snort.

3. Guest OS: (High Interaction Honeypot):
Windows XP/2007

4. FLOWCHART TO BUILD THE SYSTEM

The flow chat depicts the high level steps followed
to build the system. The system is build based on
the Live CD concept. Generally High Interaction
Honeypots are standalone desktops or Virtual OS
systems running from system hard disk drive. In
this case the virtual Honeypot OS runs on USB
stick/Pen drive. The complete system is on the USB
stick running in Live mode.

5. FLOWCHART TO INITIALIZE THE
SYSTEM

The flow chart depicts the USB Initialization steps. To
run the system from USB stick, first boot device needs
to be marked as USB disk in system BIOS. After
system boots up from USB two scripts are executed
serially. First script initialize the virtual box, creates
storage paths and starts virtual machines. Second
script establishes the network setup between base os,
data control virtual machine and Honeypot machine.
Once both scripts run successfully the system is up
and Honeypot gets started.

International Journal of Research in Advent Technology, Vol.3, No.12, December 2015
E-ISSN: 2321-9637

Available online at www.ijrat.org

30

6. LIVE USB HONEYPOT RUNNING

SCREENSHOTS

Fig.1. Live USB Honeypot Base OS (Centos)

Fig.2. Desktop Base OS

Fig.3. Data Capture Live Image Up

Fig.4. Live Window 7 VM Initializing

Fig.5. Windows 7 Live Image Up

Fig.6. Live Honeypot (Base CentOS, Data Control
[Data Capture], Windows 7 Live)

7. CONCLUSION AND FUTURE SCOPE

With this Portable honeypot, we have the opportunity
to collect those unknown attacks that are generally
missed by traditional security tools like firewalls and
intrusion detection system (IDS) and thus collect the
valuable attack data. By making it a live system i.e.
system always running in memory, persistent state
changes are avoided, as system comes to its original
state once rebooted. In addition to this, the system is
pre-installed with required packages and is a kind of
plug and play device; therefore the system can be
deployed in any network with great ease.

From this initial work, we have identified some
possibilities for future work that could be developed
further.

• Develop the Client Server model of the same
system in which the collected network data
and other attack data such as binaries will be
sent to Central Server for data collection and
statistical analysis of collected data.

• Apart from High Interaction Honeypot, we
can add Low and Medium Interaction

International Journal of Research in Advent Technology, Vol.3, No.12, December 2015
E-ISSN: 2321-9637

Available online at www.ijrat.org

31

Honeypots like Honeyd and Nepenthes.

• We can add High and Low Interaction Client
Honeypots to this system

• Develop a front end to configure Honeypot.

• Develop a front-end for attack data
visualization.

REFERENCES
[1] Niels Provos. A virtual honeypot framework. In

Proceedings of 13th USENIX Security
Symposium, pp. 1–14. USENIX, 2004.

[2] Niels Provos, Joe McClain, and Ke Wang. Search
worms. In WORM '06:Proceedings of the 4th
ACM Workshop on Recurring Malcode, pp. 1–8,
NewYork, 2006. ACM Press.

[3] Computer Emergency Response Center (CERT),
"CERT/CC Statistics 1988-2004,"
http://www.cert.org/stats/cert_stats.html, 2004.

[4] J. Levine, R. LaBella, H. Owen, D. Contis, B.
Culver, "The Use of Honeynets to Detect
Exploited Systems Across Large Enterprise
Networks," IEEE Systems, Man and Cybernetics
Society, 18-20 June 2003, (pp. 92-99)

[5] J. McHugh (2001), "Intrusion and intrusion
detection," International Journal of Information
Security 1, (pp. 14-35)

